
i 

UNIVERSITY OF ILORIN 
 

 

 

 

 

 

 

 

THE ONE HUNDRED AND SIXTY-SECOND (162
ND

) 

INAUGURAL LECTURE 

 

MINIMISATION OF ERROR: A 

NECESSARY CONDITION FOR 

ACCURACY, STABILITY AND 

PROGRESS 
 

BY 

 

 

PROFESSOR RAPHAEL BABATUNDE ADENIYI 
 B.Sc; M.Sc, Ph.D. (Ilorin) 

DEPARTMENT OF MATHEMATICS 

FACULTY OF PHYSICAL SCIENCES 

UNIVERSITY OF ILORIN, ILORIN, NIGERIA 

 

 

 

 

 

THURSDAY 12
TH

 MAY, 2016 



 ii 

This 162
nd

 Inaugural Lecture was delivered under the 

Chairmanship of: 

 

 

 

 

The Vice-Chancellor 

 

Professor AbdulGaniyu Ambali (OON) 
DVM (Zaria), M.V.Sc, Ph.D. (Liverpool), MCVSN (Abuja) 

 

 

 

12
th

 May, 2016 

 

 

ISBN: 978-978-53221-9-4 

 

 

 

 

 

Published by 

The Library and Publications Committee 

University of Ilorin, Ilorin, Nigeria 

 
 

 

 

 

 

Printed by 

Unilorin Press, 

Ilorin Nigeria. 

 



 iii 

 

PROFESSOR RAPHAEL BABATUNDE ADENIYI 
B.Sc.; M.Sc.; Ph.D. (Ilorin) 

PROFESSOR OF MATHEMATICS  

 

 

 

 

 



 iv 

BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

Courtesies 

 

The Vice-Chancellor, 

Deputy Vice- Chancellor (Academics), 

Deputy Vice- Chancellor (Management Services), 

Deputy Vice- Chancellor (Research, Technology and  

   Innovation), 

The Registrar, 

The Bursar, 

The University Librarian 

Provost, College of Health Science, 

Dean of the Faculty of Physical Sciences, 

Dean of other Faculties, Postgraduate School and Student  

   Affairs, 

Professors and other Members of Senate,  

Directors, 

Head of Department of Mathematics, 

Heads of other Department and Units, 

All other Academic Colleagues, 

All Non – Teaching Staff, 

My Lords, Spiritual and Temporal, 

Distinguished Students of Mathematics, 

Gentlemen of the Print and Electronic Media, 

Friends and Relations, 

Distinguished Invited Guests,  

Great Unilorites, 

Ladies and Gentlemen. 

 

1.0 Preamble 
All adoration, dominion, power and majesty be unto the 

Most High Lord, GOD Almighty for the privilege to deliver the 

162
nd

 Inaugural Lecture of the University of Ilorin to this 

distinguished august assembly. This is the third of such lectures 

coming from the Department of Mathematics. By the Grace of 

God, this is the first from the latest crop of Professors in this 

University and also the first by a Numerical Analyst in this 
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University. Even before I received my letter of appointment 

(that is, the period between the meeting of the University‟s 

Appointment and Promotion Committee and that of the 

Governing Council), I was somewhat inundated with calls and 

requests from several quarters as to when I would deliver my 

Inaugural Lecture. This may not be unexpected as the reason is 

not farfetched. According to the Holy Bible “hope deferred 

makes the heart sick but when the desire comes it is a tree of 

life”. However for this feat, though somehow circumstantial, I 

am most grateful to the Lord GOD and for this opportunity I 

thank the Vice-Chancellor and the University Administration. 

 

1.1  Becoming A Mathematician 

Mr. Vice-Chancellor sir, my being a Mathematician 

was not by accident. After the completion of my Advanced 

Level Course in the then Kwara State College of Technology, I 

applied to University of Nsukka to study Architecture or Estate 

Management. However, I was not offered an admission that 

year. In order not to miss admission into a University the 

following year, I applied to the University of Ilorin to read 

Mathematics/Education which I believed was not a competitive 

course (at least as at that time)  in terms of admission. But, as 

GOD would have it, I was admitted for a single honours degree 

in Mathematics. I am most grateful to Him (again) because I 

did not have any cause to regret my coming to this presently 

most subscribed University in Nigeria by prospective 

applicants, to read Mathematics. 

 

2.0  Introduction 

 This lecture mainly focuses on two numerical 

integration techniques for solution of Differential Equations 

(DEs). These are the tau method and linear multistep methods. 

While the tau method was originally conceived as a continuous 

scheme, the linear multistep methods originated as discrete 

schemes. However, both methods have crossed each other‟s 

original boundary so that the tau method can now be formulated 
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as discrete scheme and the formulation of multistep method as 

continuous scheme is now feasible. My research on the tau 

method is concerned with its error analysis by which I was able 

to accurately estimate the error. With regard to the linear 

multistep methods, my focus was directed at developing 

continuous schemes both for existing methods and new 

schemes. As will be discussed later, these two areas are 

important aspects of Numerical Analysis and are of significant 

import in Mathematics and more especially in Computational 

Mathematics. 

 Mathematics is the study of numbers, quantity, space, 

structure and change. It is used as an essential tool in many 

fields including natural science, engineering, medicine and the 

social sciences. Applied mathematics which is concerned with 

application of knowledge of Mathematics to other fields, 

inspires and makes use of new mathematical discoveries and 

sometimes leads to the development of entirely new 

mathematical disciplines such as Statistics and Game theory. 

Mathematicians also engage in pure mathematics or 

mathematics for its own sake, without having any application in 

mind. There is no clear line of separating pure and applied 

mathematics, and practical applications for what began as pure 

mathematics may require some computations. Thus, for 

example, Numerical Linear Algebra has evolved from Linear 

Algebra. 

 Numerical analysis is the study of algorithms that use 

numerical approximations for the problems of mathematical 

analysis. It is concerned with obtaining approximate solutions 

while maintaining reasonable bounds on error. Numerical 

analysis naturally finds applications in all fields of engineering 

and physical sciences, but in the 21
st
 century, the life sciences 

and even humanities have adopted elements of scientific 

computations. Also, numerical analysis is the area of 

mathematics and computer science that creates, analyses and 

implements algorithms for obtaining numerical solutions to 

problems involving continuous variables. Such problems arise 
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throughout the natural sciences, social sciences and business. 

Since the mid-20
th
 century, the growth in power and availability 

of digital computers has led to an increasing use of realistic 

mathematical models in science and engineering and numerical 

analysis of increasing sophistication is needed to solve these 

more detailed models of the world. The formal academic area 

of numerical analysis ranges from quite theoretical 

mathematical studies to computer science. 

 Put succinctly, numerical analysis is concerned with all 

aspects of the numerical solution of a problem, from the 

theoretical development and understanding of numerical 

methods to their practical implementation as reliable and 

efficient computer programs. The need for numerical analysis 

arose as a result of non-availability of analytic methods for 

solving all mathematical problems. Since numerical methods 

often provide approximate solutions to mathematical problems, 

the subject of error must necessarily come into play. Error, in 

this wise, is the difference between the exact (expected or 

desired actual) solution and the approximate (computed) 

solution resulting from the use of numerical methods. Four 

types of errors may naturally result from numerical 

computations namely, round – off error, truncation error, 

human error (or blunder) and inherent error.  

Many numbers resulting from the use of computing 

tools have infinite decimal representations and hence such 

numbers may have to be rounded up to some significant figures 

or decimal places of accuracy as desirable. Also infinite 

processes may need to be truncated to the desired number of 

terms for practical use. This results into truncation error. 

Blunders originate from the person who implements a 

numerical algorithm. An example is the transposition of 

numbers whereby the position of two figures in a given number 

may be mistakenly interchanged. Sometimes input data may 

also contain some error arising from the conduct of 

experiments, thus leading to inherent error. The study of error is 

thus of central concern in numerical analysis, otherwise the 
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technique adopted will just end up as a numerical method. 

Permit me, therefore, to use the crude equation 

 

Numerical method   error analysis = Numerical analysis 

 

 Although numerical methods are important in solving 

mathematical problems where analytic methods are not 

available, the exclusion of a procedure to analyse, or bound or 

estimate its error may make the numerical scheme incomplete 

or undesirable.  

In this treatise my focus is firstly on the error 

estimation of the tau method. However, before proceeding to 

the tau method, let me briefly say something about the 

„catalyst‟ that makes the tau method attractive and that is the 

Chebyshev polynomial. 

 

3.  The Chebyshev Polynomials   

The problem of approximating a function is of great 

significance in numerical analysis due to its importance in the 

development of software for digital computers. Function 

evaluation through polynomial interpolation techniques over 

stored table of values and which derives its justification from 

the Weierstrass theorem, has been found to be quite costlier 

when compared to the use of efficient function approximations.  

If                are the values of the given function and 

              are the corresponding values of the 

approximating function, then the error vector    is given by 

 

           

 

for k=1(1)n. The approximating function may be chosen in a 

number of ways. For example, we may find the approximating 

function such that the square root of the sum of the square of 

the components of the error function is minimum. This is the 

idea of Least squares approximation. On the other hand, the 

approximating function may be chosen such that the maximum 
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component of the error vector is minimised. This leads to the 

Chebyshev polynomials which have found important 

applications in the approximations of functions in digital 

computers. 

 

The Chebyshev polynomial of the first kind is defined by 

 

  ( )     (       )                                    (3.1) 

 

and it satisfies the triple recursion relation 

 

  ( )      ( )      ( )           .                       (3.2) 

 

The latter formula is often used in generating these polynomials 

rather than the former (explicit) form (3.1). It is to be noted that  
|  ( )|                                                         (3.3) 

and that  

  ( )                           . 

 

From this we get the monomial (a polynomial whose leading 

coefficient is unity) 

 

  ̃( )  
 

      ( )                                    (3.4) 

so that  

|  ̃( )|  
 

              .                                      (3.5) 

 

Of all monomials,   ( ) , the polynomial   ̃( )  of equation 

(3.4) has the smallest least upper bound for its absolute value in 

the interval (-1, 1), and this upper bound is 
 

     (from equation 

(3.5)). Thus, in Chebyshev approximation, the maximum error 

is kept down to a minimum and this is often referred to as the 

Mini-max principle and   ̃( )  is called the Mini-max 

polynomial. 
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Figure 1. Chebyshev Polynomial   ( )        

 

The Chebyshev polynomial also oscillates with equal amplitude 

in its entire range of definition ( see Figure 1 above ) and thus 

ensuring equal distribution of error throughout its range of 

definition. This is in contra- distinction to the popular Taylor 

polynomial that only guarantees minimum error at the origin 

but deviates more and more as one moves away from this 

origin. 

 

4.0   The Tau Method 

 Accurate approximate solution of Initial Value 

Problems (IVPs) and Boundary Value Problems (BVPs) in 

linear Ordinary Differential Equations (ODEs) with polynomial 

coefficients can be obtained by the tau method originally 

introduced by Lanczos (1938).  Techniques based on this 

method have been reported in literature with applications to 
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more general equations including non-linear ones (Ortiz, 1969 

and Onumanyi and Ortiz, 1982) while techniques based on 

direct Chebyshev series replacement have been discussed by 

Fox (1962) as well as to both partial differential equations and 

integral equations (Adeniyi, 2004). The tau method in its most 

three important variants is as follows: 

 

4.1  Differential Formulation of the Tau Method 

 Consider the m
th
 order ordinary differential equation 

bxaxfxyxPxLy r

r

m

r




),()()(:)( )(

0

        (4.1a) 

with associated conditions 

mkxyaxyL krk

r

rk

m

r

rk )1(1,)(:)(* )(

0




  (4.1b) 

and where |a| < ∞,  |b| < ∞, ark, xrk, k, r = 0(1)m-1, k = 1(1)m, 

are given real numbers; f(x) and Pr(x), r = 0(1)m,  are 

polynomial functions or sufficiently close polynomials 

approximants of given real functions. 

For the solution of problem (4.1) by the Tau method, we  seek 

an approximant of the form 

 


nxaxy r

r

n

r

n ,)(
0

   (4.2) 

of y(x) which satisfies exactly the perturbed problem: 

 )()()( 1

1

0

xTxfxLy rmnrsm
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r
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



   (4.3a) 

 mkxyL krkn )1(1,)(*     (4.3b) 

for a  x  b and where r , r =1(1)m+s, are parameters  to be 

determined along with the coefficients ar, r = 0(1)m, in (4.2). 
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  (4.4) 

is the r-th degree Chebyshev polynomial valid in the interval 

[a,b] and 
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  mrrNs r  0:|max  

is the number of overdetermination of equation (4.1a) ( see Fox, 

1968). 

We determine ar, r = 0(1)n, and r , r = 1(1)m+s, by equating 

corresponding coefficients of power of x in equation (4.3a) 

together with conditions (4.3b). Consequently, we obtain the 

desired approximant yn(x) in (4.2).  

 

4.2  The Integral Formulation of the Tau Method 

The integrated form of equation (4.1a) is given by 

 )()())(( xCdxxfmxyI mL       (4.6) 

where Cm(x) denotes an arbitrary polynomial of degree (m-1), 

arising from the constants of integration and 

     dxLmI L )(   ,    (4.7) 

is the m-times indefinite integration of  L(∙).  The 

corresponding tau problem is therefore: 

)()()())(( 11

1

0

xTxCdxxfmxI rnsm

sm

r

mnL 





  


 (4.8a) 

mkxL krkn )1(1,)(*     (4.8b) 

where  

 


nxbx r

r

n

r

n ,)(
0

  .  (4.9a) 

The br‟s are constants to be determined along with the r ‟s in 

equation (4.8a) .  Problem (4.8) often gives a more accurate tau 

approximant than equation (4.3) does, due to its higher order 

perturbation term. 

 

4.3  The Recursive Formulation of the Tau Method 

 

The so-called canonical polynomials {Qr(x)}, rN0-S, associated 

with the operator of equation (4.1) is defined by 
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LQr(x) = x
r
     (4.9b) 

 

where S is a small finite or empty set of indices with cardinality 

s(s  m + h), h being the maximum difference between the 

exponent of the generating polynomial Lx
r
, for rN0.  (see Ortiz, 

1969 and 1974).  Once these polynomials are generated, we 

seek, in this case, an approximant of y(x) of the form 

 )()(
0

xQdxv rr

n

r

n 


     (4.10) 

which is identically given by 

)()()( )1(
1

0

1

00

xQCxQfxv k

vmn

k

rmn

k

rsm

sm
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rr

F

r
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










   (4.11) 

and where fr, r = 0(1)F, are the coefficients in f(x) and the dr‟s 

are constants to be determined along with the r ‟s in equation 

(4.11). The use of the Qr‟s is advantageous as they neither 

depend on the boundary conditions nor on the interval of 

solution.  Furthermore, they are re-usable for approximants of 

higher degree. 

 

5.  Error Analysis of Tau Method 

 The first attempt on an error estimation of the tau 

method was by Lanczos (1956) where he developed a simple 

algebraic approach to this problem by using the relation of the 

Chebyshev polynomials to trigonometric function, and which 

was applied only to the restricted class of first order problems: 

          0A x y x B x y x C x    ,  0 0y x y , 0 1x    .         (5.1) 

 

The coefficients A,B and C are polynomial functions. Fox 

(1968) later developed an approach which could handle higher 

order problems. However, his approach was not general in 

application. Namasivayam and Ortiz (1981) deduced 

asymptotic estimates for the tau method approximation error 

vector per step for different choices of perturbation term. Crisci 

and Ortiz (1981) reported the existence and convergence results 

for the numerical solution of differential equations with the tau 
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method. Freilich and Ortiz (1982) obtained bounds for the error 

of the recursive formulation of the tau method when applied to 

system of ODEs while Freilich and Ortiz (1991) showed that 

the error analysis for a rational tau method can be combined to 

give upper and lower error bounds for the error vector of the tau 

method for rational approximations. Also, Namasivayam and 

Ortiz (1993) reported the dependence of the error 

approximation of the tau method on the choice of perturbation 

terms.  

The spring board for my research on the subject of 

error analysis of the tau method was the work of Onumanyi and 

Ortiz (1982). This practical error estimation approach therefore 

deserves greater attention; the approach follows a similar trend 

as the tau method itself and so involves the determination of 

several unknown coefficients of an assumed error polynomial 

function just in the same way as the coefficients of the tau 

polynomial approximation of Section 4 are determined. 

Although the error estimate in this case was accurate, the 

method is not considered efficient because of the several 

parameters involved. It is necessary to remark here that 

Onumanyi (1983) also reported a more efficient but less than 

general error estimation of the tau method. 

 

6.   My Humble Contributions  

 The motivation for my research activities on the subject 

of the error analysis of the tau method was derived from the 

fact that the approximate solution  ny x  to the analytical 

(exact) solution of an ODE by the tau method as proposed by 

Lanczos (1938) is an economized polynomial function 

implicitly defined by the ODE. Consequently, the error of tau 

method could be estimated by the process of economization of 

a power series. This process is a procedure by which the 

number of terms of the truncated series representation of a 

given function defined over an interval can be reduced without 

substantially damaging the accuracy of the original function 

over that interval. 
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 To economize the n
th

 degree polynomial approximation  

   
0 0

n
r r

n r r

r r

p x a x f x a x


 

   
                   (6.1)

 

of a given function  f x , the best choice  of polynomial to 

employ is the Chebyshev polynomial  nT x   of Section 3 

appropriately defined in the range of definition of  f x
.
 

This is because (as mentioned earlier), the monomial 
  ( )

  
( )      

 

  
( ) ∑   

    
              (6.2)

  

has a small upper bound to its magnitude in that interval than 

any other monomial. As the maximum magnitude of  nT x  is 

unity, the upper bound thus referred to is
  

1
n

nC


.
 

Hence, to economize the approximation (6.1) we have that 

  ( )  ∑    
     

          ∑    
     

      (
  ( )

  
( )  

 

  
( ) ∑   

    
     ). 

That is, 

  ( )   ∑  ̅  
  

    ( )

  
( )

   
          .        (6.3) 

 

So then, the error in the economization of (6.1) to a polynomial 

of degree n-1 is the function 

 

 ( )  
     ( )

  
( )                     (6.4) 

Consequently, the error estimation I have proposed was based 

on a modification of equation (6.4). I modified equation (6.4) to 

have the error polynomial function  
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((  ( ))    
    ( )      ( )

      
(     )            (6.5) 

where    is a parameter to be determined and    ( ) is an m
th
 

degree polynomial function chosen to ensure that the m 

conditions associated with an m
th
 order ODE are satisfied. For 

an IVP whose conditions are all specified at only one point    

say, the function takes the form
         .                      

   ( )  (   )           (6.6) 

 

From my study, it was observed that this choice could also be 

appropriate for BVPs, in which case we assumed that some of 

the homogeneous conditions of the error function  

        
1n n n m

e x y x y x e x


  
                    (6.7)

 

are perturbed. This can lead to increase in accuracy of the error 

estimate of the tau method as also suggested by Fox and Parker 

(1968). This is illustrated by the two examples in the next 

section. 

 

7.0   Error Estimation of the Method 

My error estimation of the tau method for the three 

variants described above is now briefly described here. 

 

7.1 Error Estimation for the Differential Form 

 While the error function for the differential form of the 

tau method 

 

 en,D(x) = y(x) – yn(x)     (7.1) 

 

satisfies the error problem 

 

 )()( 1

1

0

, xTxLe rmnrsm

sm

r

Dn 





    (7.2a) 

 L
*
 en,D(xrk) =0,     k = 0(1)m,   (7.2b) 
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the error approximant 

 

   )1(
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satisfies the perturbed error problem 

 

  )(~)()( 2
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(7.4a) 

  0)(
1,

* 
nDn xeL     (7.4b) 

 

where the extra parameters r
~ , r = 1(1)m+s, and n,D are to be 

determined and m(x) is a specified polynomial of degree m 

which ensures that  
1, )(
nDn xe  satisfies the homogeneous 

conditions in equation (7.2b). We insert (7.3) in equation (7.4a) 

and then equate corresponding coefficients of x
m+s+1

, x
n+s

, , 

x
n-m+1

 and the resulting linear system is solved for only n,D by 

forward elimination, since we do not need the r
~ ‟s in equation 

(7.4a). Consequently, 
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)(max ,    (7.5) 

 

where RD is to be determined.  (Details can be found in Adeniyi 

et al, 1991). 
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7.2 Error Estimation for the Integral Form 

 The error polynomial 
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satisfies the integrated perturbed error problem: 
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We insert (7.6) in equation (7.7) and then equate coefficients of 

x
n+s+m+1

, x
n+s+m

, , x
n-m

 for the determination of the parameter 

n,I in (7.6).  Subsequent procedures follow as described above 

in Section 7.1 in order to obtain the error estimate: 
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7.3 Error Estimation for the Recursive Form 

 

Once the canonical polynomials of Sub-section 4.3 are 

generated, they can be used for an error estimation of the tau 

method (see Crisci and Ortiz, 1981 and Namsivayam and Ortiz, 

1981).  Here we considered a slight perturbation of the given 

boundary conditions (4.1b) by D  to obtain an estimate of the 

tau parameter m+s, in terms of canonical polynomials, which is 

then substituted back into the expression for D  in equation 

(7.5) for a new estimate R . 
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So doing, we have from (4.1b) that 
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since D  > 0.  This leads to the inequality 
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The two quantities  and  are expressions which depend on 

the canonical polynomials and the derivatives of these 

polynomials when evaluated at some points of [a,b].   

 

Thus, we have 
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Thus, we have, as our error estimate, 
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Where 

 

 en,R(x) = y(x) – Vn(x). 

 

 

For the purpose of automation of the tau method with its error 

estimate, a generalised approach to the subject is most 

desirable. Consequently, Adeniyi et al. (1991) obtained the 

error estimate of the differential form for the general class of 

problem (4.1). The general formula thus obtained: 
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was itself partly recursive and is fast and reliable. This led to 

the development of a computer programme which could 

effectively and efficiently handle the problem for every 

member of class (4.1). 

The scope of application of estimate (7.30) was 

extended in Adeniyi et al. (1991) to nonlinear problems through 

the process of linearization by the Newton-Kantorovich 

process. Once all information about a given DE is supplied, the 

programme would “output” the tau approximation, the 

corresponding exact error and the associated error estimate. 

For problems with non-smooth solution in the range of 

definition, the partitioning of the range is necessary so that 

subsequently a segmented approach of the tau method could be 

adopted. This was the focus in Adeniyi (1993) where the error 

estimate for the piece-wise tau method was reported. The 

results showed that, as the uniform step-length of the segments 

decreased, the accuracy of the error estimate improved also just 

as the degree of tau approximation increased.  

In 1982, Crisci and Russo reported an analysis of the 

stability of a one-step integration scheme which was originated 

from the Lanczos tau method and applicable to IVPs in first 

order linear ODEs. This method which was based on the 

canonical polynomials was of discrete form. The desire to 

extend the scope of my error estimation technique led me to 

consider this class of problems as reported in Adeniyi (1996). 

Again, the error estimate obtained was good as it gave, 

accurately, the order of the tau approximant being sought. A 

pertinent question was then that: is the error estimate obtained 

accurately optimum? This was the issue I addressed in Adeniyi 

(2000) where the optimality of the error estimate for the one-

step discrete tau method was studied. It was confirmed the 

estimate was optimum. Thus, as in the cases for the continuous 

forms of the tau method, the error estimate for the discrete form 

was also accurate and effective. 

Having generalised the error estimation for the 

differential form as described above, the concern in Yisa and 
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Adeniyi (2015) and Issa and Adeniyi (2013) was that:  could it 

be done for the recursive form of the tau method? The answer 

was in the affirmative. This subsequently led us to an extension 

of this general recursive form to nonlinear problems in Issa and 

Adeniyi (2013). For an all-encompassing work on the subject of 

error estimation of the tau method for ODEs, it was needful to 

carry out the same investigation for the integral form/variant. 

This was the focus in Ma‟ali et al. (2014)   

Differential equations are mainly of two types namely 

ODEs and PDEs. All the works reported above related to 

ODEs. The need to further extend my study on error estimation 

to partial differential equations led to our works in Adeniyi and 

Erebholo (2007) where an analogue of the tau method for 

solving initial and boundary value problems was considered, in 

Biala; and Adeniyi (2015) where we combined the method of 

lines and the tau method for a “line-tau” collocation method; 

and in Erebholo and Adeniyi (2015) where a prior integration 

technique was the focus. A trend which I consistently observed 

in all these research on the subject of error estimation of the tau 

method was that for linear problems, nonlinear problems, piece 

tau approximation problems in ODEs, and also for PDEs, the 

error estimates for all the variants closely captured the order of 

the tau approximation and improved significantly as the degree 

of the approximation increased. 

       

8.0  Development of Continuous Formulation of Finite 

 Difference Schemes 
The focus here was to develop continuous 

schemes/methods for the solution of the class of problems 

 ( )( )   (          (   ))                         (8.1a) 

 ( )(  )                                       (8.1b) 

for k=1,2,3,4. 

 

The numerical solution of ODEs by collocation methods has 

been well studied (see Lambert, 1973; Zennaro, 1985 and 

Fairweather and Meade, 1989).  In particular, Wright (1970) 
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established some relationships between certain Runge-Kutta 

methods and one-step collocation methods.  Sarafyan (1990) 

provided algorithms for continuous solutions by Runge-Kutta 

methods with computational advantages.  Lie and Norsett 

(1989) developed a multistep collocation method which showed 

that the Backward Differentiation Formulae (BDF) and the one-

leg methods of Dahlquist can be produced from their 

formulation if collocation is done at one point. 

 In 1993 I, together with my colleagues, proposed a 

power series approach to multistep collocation which produced, 

for the first order equation, the Gragg-Stetter method of order 

four, the Hammer and Hollingworth method of order four, the 

BDF – methods, the Adam-Bashforth and Adam-Moulton 

methods, the optimal k-step methods and the Mid-point 

method.  In addition, we derived a new class of accurate k-step 

methods (k  > 2) with adequate stability intervals for non-stiff 

problems. For the second order equation without first derivative 

present, the Numerov method of order four was produced by 

collocation. 

This early work on the subject of development of 

continuous formulation of multistep methods through the 

process of collocation is presented here also for interested 

members of this audience. 

 

Consider the IVP 

       bxayayyxfxy  ,,, 0  (8.2) 

We assumed that problem (8.2) has a unique smooth solution y 

 ℝn
, f  ℝ 

n
 and a = x0 < x1…..  < xN = b

 

 

We assumed further, a constant step size h = xi+1 - xi   and 

adopted a notation 

    kjyxyyxy jiji ;...,2,1,00   being a step 

number. 

 

 

8.1 The Collocation Method 
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We assumed an approximate solution of the form 

   1,
0




IMnxaxy
n

r

r

r
  (8.2) 

where   1,, 1  Mxxx ki denotes the number of points used 

and 1I  denotes the number of interpolation points used. 

 

There are n + 1 necessary equations needed to be used in 

determining the unique values of            in equation (8.2).  

These equations are given by a selection from 

   1,...0;11   kjyxy jj   (8.3) 

      Mjxyxfxy jjj ...,2,1;,    (8.4) 

where    kikikiii xxxxxx   ,,...,, 11  

The collocation method can be achieved step by step as 

follows: 

(a) specify k; 

(b) select the required (n + 1) equations from (8.3) 

and (8.4); 

(c) solved by Gaussian elimination method the (n 

+ 1) equations for a0, …  an; 

(d) obtain  xy  and  1ixy
.
 

 

Remark 

The order of the collocation method is P = n + m where 

m < M denotes the number of collocation points at the Gaussian 

points.  If all collocation points are at the Gaussian points then 

P = I + 2m -1 , and if  I = k then P = k + 2m – 1. 

 

 

8.2 Collocation At The Off-Grid Points 

 Collocation at the off-grid points kiki xx  ,1  is 

considered in this section. 
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8.2.1 Gaussian Point Method (k = 1) 

  

Case n = 1 
 

From (8.3) and (8.4), we select the following equations 

 

 

 

  1,

1;

2
1

2
1

1 




Mfxy

Iyxy

ii

ii

 

to obtain the values of α0 and α1 in equation (8.2), where 

 1
2

1
2

1 
 iii

xxx  is a Gaussian point in  lii xx , .  The 

resulting approximations after simplification are: 
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  (8.5a) 

and 

 

 
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  (8.5b) 

 

The schemes (8.5) are A – stable, one-stage Runge-Kutta 

methods with an error constant 
24

1
3 c   and are of order two. 
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Case n = 2 
 

From (8.3) and (8.4), we select the following equations 

 

 

     

      2,3213;

3213,
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i

ii
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to obtain       and    in (8.2), where 1x  and  2x are the 

Gaussian points in  1, ii xx . 

 

The resulting approximations after simplifications are 
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and 
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The schemes (8.6) are A-stable, order four, two-stage Runge-

Kutta methods with an error constant  
4320

1
5 c  
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In particular, (8.6b) is the Hammer and Hollingsworth formular 

(see Lambert, 1973).  More collocation points at the Gaussian 

points [xi , xi+1] will lead to higher order methods in this case. 

 

8.3 New Gaussian Point Methods 

 We consider collocation using combined off-grid and 

grid points 

 

Case n = 1 ; k = 1 
 

From (8.3) and (8.4), we select the following equations 
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to obtain    ,    and     in (8.2).  The resulting approximations 

after simplification are 
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     23

1 64 ii xxhxxx    

    (8.7a) 

     23

2 2
32 ii xxhxxx   
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and 

   




   1

2
11 4

6
iiiii fff

h
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    (8.7b) 

where (8.7b) is the well-known fourth order Gragg-Stetter 

scheme (Lambert, 1973), with an error constant  

 
2880

1
5 c

  . .
 

 

From equation (8.7b) we obtain fi+1 for the proposed continuous 

hybrid scheme (8.7a).  To obtain the off-grid function value 

2
1i

f  in (8.7), we use the following order three formula: 

    iiiii
ff

h
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2
1

82

1
  (8.8) 

suggested in England and Matthiej (1985).  The combined 

schemes (8.7b) and (8.8) yield an order four A – stable method. 

(England and Matthiej, 1985). 

 

Case   n = 5, k = 2 
 From (8.3) and (8.4), we select the following equations 
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to obtain    ,     …    in  equation (8.2).  The resulting 

approximation after simplification produces 

the following Butcher scheme of order five 

 
  


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h
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3212 126415
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(8.9) 

with an error constant  
5580

1
6


c   (see Lambert, 1973). 

 

8.4 Collocation at the Grid Points 

Consider collocation at the grid points xi  ,  xi+1, … , xi+k-1 , xi+k.  

The constructed collocation polynomial approximations in this 

section are obtained and put in the form 
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  (8.10) 

where jj and  are specified polynomials of degree at most 

k.  From equation (8.10) we produce many of the popular 

conventional k-step methods by using y(xi+k).  We now 

summarise some of such results. 

 

8.4.1 The Adam-Moulton Methods 

 

From (8.2), we get 
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We solve the (k + 2) equations to give 
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Case k = 1 

       jiji fxxxxyxy 
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1
            (8.11a) 
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    iiii ffyxy   11
2

1
   

    (8.11b) 

where equation (8.11b) is the Trapezoidal rule of order two 

with an error constant  
12

1
3 c

     .   
 

Case k = 2 
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Thus, 
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  (8.12) 

where equation (8.12) is the two step Adam-Moulton method of 

order three. 

 

Case k = 3 
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Thus, 

    iiiiii ffff
h

yxy   12323 5199
24

   (8.13) 

 

is the three-step Adam-Moulton method of order four. We 

remark that higher order members can be produced in a similar 

manner. 

 

8.4.2 Specific Equation (8.3) and (8.4) for Other Classes 

 of Methods 
  

8.4.2.1 The Adam-Bashforth Methods 

 

 

  nkMkjfxy

klyxy

jiji

kiki









;1,...,1,0;

1,1;11

 

  

8.4.2.2 The Optimal k-step Methods 
 

  1,1;  klyxy ii  

   nkMkIfxy jiji   1;1,...,1,0;  

  

8.4.2.3 The Backward Differentiation Formulae 
 

  1;1,...,0;   kIkjyxy jiji  

  knMfxy kiki 
 ,1;  

  

8.4.2.4 The Mid-Point Method, k = 2 
 

 

  2,1;

2;1,...,1,0;

1 







nMfxy

Ikjyxy

kii

jiji
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8.4.2.5 A New Class of Methods, k > 2 

  

 

  kMkjfxy

Ikjyxy

jiji

jiji









,)1(1;

2;1,0;

 

The resulting methods are 

 

Case k = 2 

    1212 42
55

1

5

4
  iiiii ff

h
yyxy  

    (8.13a) 

Case k = 3 

    12323 363
88

1

8

9
  iiiiii fff

h
yyxy

    (8.13b) 

Case k = 4 

   113434 607222884
243243

19

243

224
  iiiiiii ffff

h
yyxy (8.13c) 

 

Table 1: Order, Stability and Error Constants 
Methods Order Absolute Stability 

Interval 

Error Constant 

Adam-

Moulton 

New Methods 

(8.13a) 

3 

3 

[-1,0] 

[-4,0] 

- 1/24 

- 1/30 

Adam-

Moulton 

New Methods 

(8.13b) 

4 

4 

[-3,0] 





 0,2 3

2

 

72019  

72018  

Adam-

Moulton 

New Methods 

(8.3) 

5 

5 

[- 1.8,0] 

[- 1.6,0] 
12021  

121521  



 30 

 

Remark 
The new methods (8.13a), (8.13b) and (8.13c) are 

compared with Adam-Moulton methods in Table 1 above.  

They have smaller error constants than the Adam-Moulton 

methods and have adequate stability intervals for non-stiff 

problems. 

 

8.5 Derivative Approximations 

 

Let 

   110 ,  ii xxxxaxy 
.
 

Then 

 

 

  lilili

iii

yxaaxy

yxaxy

 



10

10

.

 

Thus 

 yi+l – yi = alh 

and so 

  i

ii xy
h

yy
a 


 1

1     (8.14) 

where equation (8.14) is the forward difference approximation 

to the first derivative. 

 

Similarly, if we let 

   11

2

210 ,   ii xxxxaxaaxy  

then, from the equation 

 1,,12

210  iiiyxaxaa jii  

we get the central difference approximation 

  
2

11

2

2
2

h

yyy
axy iii

i

 
   (8.15) 

   ii xaaxy 21 2  
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h

yy ii

2

11  
      (8.16) 

 

8.6 A Special Second Order ODE 

 

Let us consider 

    yxfxy ,     (8.17) 

 

where y(a) and y(a) are specified.   

When k = 2 and we consider n = 4 in (8.2), 

  2

4

4

3

3

2

210 ,  ii xxxxaxaxaxaaxy  (8.18) 

From equation  (8.3), we have 

 

 

  















3,1;

1,0;

jfxy

jyxy

jiji

jiji

   (8.19) 

The remaining condition necessary to determine a0, a1, … , a4 

uniquely is given by   ii fxy   

 

Thus, we obtain 

 

            iiiii fxfxfxyxyxxy    1122011
(8.20) 

where 

 

 

    101

1

0




 

xxa

h

xx
xa i



 

 
       

     xxH
h

x

xxhHxHx

221

2210

2
6

1

6

1

2

1








 

      1

2

11   ii xxhxxxH  
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Finally, at xi+2, equation (8.20) becomes 

    iiiiii fff
h

yyxy   12

2

12 10
12

2  (8.21) 

 

where equation (8.21) is the well-known Numerov formula of 

order four with error constant 24015 c . 

From this study, therefore,  many important classes of 

finite difference methods were produced including new ones 

which are generally more accurate (with smaller error 

constants) than the Adams-Moulton methods and have adequate 

absolute stability intervals for non-stiff problems. The use of 

power series as basis function in the assumed trial solution was 

exploited. This work laid the foundation for research work in 

this area for several authors thereafter.   

Adeniyi (1994)  reported a combination of this idea and 

the tau method with the choice of canonical polynomials as 

basis function for the derivation of continuous forms of the 

Trapezoidal methods, the Simpson‟s  method and the Gragg 

and Stetter  one-step implicit hybrid method of order four.  

Because of  the elegant properties of the Chebyshev 

polynomials which I had earlier highlighted, their choice as 

basis functions in the assumed trial solution was made in 

Adeniyi and Alabi (2009) to construct continuous forms of 

some existing and new linear multistep methods for  solution of 

first order initial value problems. The resulting schemes were 

accurate and effective. In a similar vein, Adeniyi and Alabi 

(2011) focused on the development of methods for direct 

solution of problems with higher orders without recourse to 

reduction of the equations to systems of first order which is the 

conventional approach. These methods performed favourably 

well in accuracy. A six-step method which emanated from this 

study has an order of eight with a very small error constant. 

 In Areo and Adeniyi (2013b), a self-starting LMM for 

direct solution of second order problems was reported while 

Mohammed and Adeniyi (2014a) obtained a three-step implicit 
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hybrid LMM for problems of third order. The work in 

Mohammed and Adeniyi (2014c) was concerned with the 

construction of five-step block hybrid backward differentiation 

formulae for second order problems. These block methods 

simultaneously generated approximate solutions at different 

grid points in the interval of integration compared to the LMMs 

or Runge-Kutta methods, and are less expensive in terms of the 

number of function evaluations. They are also self-starting. 

Recently, Adeniyi and Ekundayo (2014), Adeniyi and 

Taiwo (2015) and Adeniyi and Bamgbala (2015) constructed 

some orthogonal polynomials with different weight functions 

and over different intervals. These polynomials were exploited 

as basis functions in the trial solution (assumed approximation) 

to desired solutions of some IVPs. The resulting numerical 

schemes – block and non-block forms – were also consistent 

and zero stable ( hence convergent). Numerical evidences 

arising from their practical implementations on some test 

problems also confirmed their accuracy and effectiveness in 

handling problems within their scope of coverage. 

  Our more recent works on this subject were reported in 

Ndukum et al. (2015) where the fourth order trigonometrically 

fitted method with the block unification implementation 

approach for oscillatory problems was developed, and Biala et 

al. (2015) which reported the derivation of block hybrid 

Simpson‟s method with two off-grid points for solution of stiff 

systems.  

As an illustrative numerical example, consider here the 

application of the trapezoidal method 

   iiii ff
h

yxy   11
2

              (8.22) 

 whose continuous form is 

    1
2

1
 kkkk ffxxYxY    (8.23) 

and the Gragg-Stetter method 
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  




   1

2
11 4

6
iiiii fff

h
yxy                             (8.24) 

whose continuous form is 

       

       iii

iiii

xxhxxhxxx

fxfxfx
h

yxy







 



223

0

0
2

1112

2

3
2

92

3





               (8.25) 

  

     23

1 64 ii xxhxxx 
                     (8.26)

 

 

     23

2 2
32 ii xxhxxx 

        
 

to the  nonlinear IVP 

  0)0(,
4

0,1 2  yxyxy 
  (8.27) 

 

whose analytic solution y(x) = tan x, is smooth.  The results for 

4
1.045.0   handh  are compared in Tables 8.2(a) 

and 8.2(b). 
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Table 2(a) Error of Methods for Problem (8.27) with the 

step length h = 
4

5.0  ,  x = h/10 

X Order Two Methods Order Four Methods 

Trapezoid

al 

Method 

(8.22) 

Continuous 

Scheme 

(8.23) 

Gragg and 

Setter 

Method 

(8.24) 

Continuous 

Scheme 

(8.25) 

0.0   0.0 0.0 0.0 0.0 

0.927E-2  3.59010E-3  8.95976E-4 

0.854E-2  7.05872E-3  1.23950E-3 

0.1178  1.02828E-2  1.15357E-3 

0.1571  1.31364E-2  7.64247E-4 

0.1963  1.54887E-2  2.02264E-4 

0.2356  1.72025E-2  3.95200E-4 

0.2749  1.81323E-2  8.82592E-4 

0.3142  1.81200E-2  1.10381E-3 

0.3534  1.70024E-2  8.89718E-4 

0.3927 1.45886E-2 1.45886E-2 5.5268E-3 5.52684E-3 

0.4320  3.40708E-2  2.80864E-3 

0.4712  5.18266E-2  2.14655E-3 

0.5105  6.7001E-2  2.21442E-3 

0.5498  8.11012E-2  3.33235E-3 

0.5890  9.19983E-2  3.74187E-3 

0.6283  9.99094E-2  3.49408E-3 

0.6676  1.04390E-1  1.73410E-3 

0.7069  1.04921E-1  2.68529E-3 

0.7461  1.00886E-2  2.32329E-3 

0.7854 9.15518E-2 9.15518E-2 8.60412E-5 3.60412E-5 
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Table 2(b) Error of Methods for Problem (8.27) with h = 
4

1.0  , 

x = h/10 
X Order Two Methods Order Four Methods 

Trapezoidal 

Method 
(8.22) 

Continuous 

Scheme (8.23) 

Gragg and 

Setter  
Method 

(8.24) 

Continuous 

Scheme 
(8.25) 

0.0 0.0 0.0 0.0 0.0 

7.8540E-3  2.42127E-5  5.86204E-6 

1.5708E-2  4.74564E-5  7.82843E-6 

2.3562E-2  6.87615E-4  6.86870E-6 

3.1416E-2  8.71575E-4  3.95333E-6 

3.9269E-2  1.01672E-4  5.43369E-6 

4.7124E-2  1.11332E-4  3.85450E-6 

5.4978E-2  1.15161E-4  6.79694E-6 

6.2832E-2  1.12180E-4  7.79694E-6 

7.0686E-2  1.01405E-4  5.86244E-6 

7.8540E-2 8.18519E-5 8.18519E-5 1.607765E-8 1.66765E-8 

8.6397E-2  1.5125E-4  6.15674E-6 

9.4248E-2  2.0988E-4  8.25792E-6 

1.0210E-1  2.56749E-4  7.28815E-6 

1.0996E-1  2.90842E-4  4.25446E-6 

1.1781E-1  3.11149E-4  1.70054E-7 

1.2566E-1  3.16648E-4  3.94502E-6 

1.3352E-1  3.06313E-4  7.0627E-6 

1.4137E-1  2.79108E-4  8.1476E-6 

1.4922E-1  2.33988E-4  6.15552E-6 

1.5708E-1 1.690000E-4 1.69000E-4 3.30620E-8 3.30620E-8 

 

Remark: Continuous schemes generated more solution 

(output) than their discrete equivalents. 

 

Conclusion 

Mr. Vice-Chancellor Sir, in the course of this lecture, I 

have presented a fast, efficient and reliable error estimation 

technique for a numerical method for the solution of ordinary 

differential equations. The specific numerical method is the tau 

method, which was originally developed to solve linear 

problems with polynomials coefficients and whose scope of 

application has been extended to non-linear problems, non- 

polynomial coefficients problems, partial differential equations, 

integral equations and integro-differential equations. The three 
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variants of the tau method namely the differential form, the 

integral form and the recursive form have been considered and 

the error estimation for each of the variants have been 

discussed. For all the three, the resulting estimates obtained 

accurately capture the order of the tau approximation to the 

analytic solution, thus justifying the desirability of the 

technique. The extension of this method of error analysis of the 

tau method to non-linear problems, piece-wise solution, discrete 

formulations for ODEs and partial differential equations 

confirm that the error estimation is good in terms of accuracy 

and effectiveness.  

The development of continuous forms of existing and 

new linear multistep methods as well as hybrid methods for 

direct and indirect solution of initial and boundary value 

problems has also been presented. The main attractions of these 

continuous numerical integration schemes are their ability to 

yield several output of solutions at the off-grid points without 

requiring additional interpolation and at no extra cost. These 

render the methods efficient, accurate and highly desirable. 

 

Recommendations 

Mr. Vice-Chancellor Sir, much has been said in this 

Lecture on the minimisation of the error of a function which is 

implicitly defined by a differential equation and for which the 

Chebyshev polynomial is a major factor. The mini-max 

property and the equi-oscillation of these polynomials which 

also lead to even distribution of error when used for function 

approximation in the entire range of its definition account for 

this.  

For some numerical methods, the introduction of 

round-off error at any stage of their implementation may not 

affect the final output significantly, in which case the error 

either fizzles out or does not grow. Such schemes are stable. If 

on the other hand the error introduced adversely affects the 

final output as to render it unacceptable, in which case there is 
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much deviation from the expected result, the scheme is 

unstable. 

All deviations from acceptable, ideal standards and 

norms of any just and egalitarian society are necessarily errors. 

When errors are minimised in a system whether mathematical, 

social, political, such systems experience relative stability and 

progress. Nigeria is a country where the errors in our systems 

have led to injustice, in-equity, disorderliness and sometimes 

outright crisis and chaos.  

Before I humbly submit my recommendations, we need 

to give greater attention to the needed systemic Chebyshev 

polynomials that will bring about stability, peace and progress 

in our nation. And what are they? They are love for our fellow 

humans, tolerance and respect for human life and more 

importantly the Fear of GOD. 

 

Other recommendations are: 

1. Judicious allocation of resources to the various sectors of 

our economy to minimise errors resulting to wastage of 

scarce resources. 

2. Proper monitoring of budget implementation to minimise 

the errors of corruption which in recent times have 

resulted to large scale embezzlement.  

3. Proper monitoring of structural buildings to forestall the 

error that may result to collapse of buildings. 

4. Allowance for use of non-programmable calculators for 

examination purposes at all levels in this University as 

was the practice before, in order to avoid the errors 

resulting from brain fatigue. In appreciation of 

developing science and technology, some examination 

bodies such as WAEC allow the use of calculators. 

WAEC goes as far as supplying her examination 

candidates with calculators with functions specifically 

allowed for the examinations. The University can as well 

borrow a leaf from this by giving out non-transferable 

customised but affordable calculators to all students, 
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particularly those of Science and Engineering. This will 

invariably soothe their pains and earn substantial 

revenue.. 

5. The use of Numerical methods such as interpolation and 

extrapolation techniques for projecting our population at 

national, state and local government levels. This will 

greatly reduce waste of scarce resources that could be 

used for other profitable ventures/projects. 

6. Greater allocation of resources to research with less 

stringent conditions to avoid the error of deprivation of 

researchers who sometimes may not be able to articulate 

their proposals well enough. 

7. Reduction of number of courses examinable by CBT in 

the University especially at higher levels so as to 

minimize the error which may result to the production of 

graduates who are not able to write good English. 

 

Acknowledgements 

1. I can never thank GOD enough Who, through the Lord 

JESUS Christ, has sustained, kept and upheld me to this 

moment. Again and again and again, to Him be all 

glory, honour, adoration, dominion, power and majesty. 

2. I am grateful to the Administration of University of 

Ilorin, currently headed by the amiable, highly 

cherished, respected, quiet but hard working Vice-

Chancellor Professor AbdulGaniyu Ambali under 

whose tenure GOD Almighty elevated me to the 

position of Professor. 

3. I thank my Dean, Professor I. A.  Adimula and all the 

staff of the Faculties of Physical Sciences and Life 

Sciences with whom we were together under the 

umbrella of the former Faculty of Science. 

4. I thank all my teachers at the tertiary levels of my 

education most especially my academic father, 

Professor Peter Onumanyi of the National 

Mathematical Centre, Abuja who supervised me at the 



 40 

master and doctoral levels, Professor M. A. Ibiejugba, 

Professor J. S. Sadiku, Pastor (Dr.) E. A. Adeboye of 

the Redeemed Church of GOD, Dr. P. K. Mahanti and 

Dr. Prem Narain. 

5. I thank Professors J. A. Gbadeyan, Professor O. M. 

Bamigbola and Professor T. O. Opoola, my academic 

tripod in this University. 

6. I thank my immediate past indefatigable Head of 

Department, Professor M. O. Ibrahim; the current head, 

Professor O. A. Taiwo; and all the staff of my 

Department together with whom we constitute an 

academic family in this University 

7. I thank Professors C. O. Akoshile, Professor J. O. 

Obaleye and Professor R. A. Ipinyomi who serve as my 

Referees. 

8. I thank Drs. M. O. Alabi, E. A. Areo, A. I. Maali (Dean 

of Student Affairs, Ibrahim Badamasi Babangida 

University, Lapai), B. M. Yisa, E. O. Adeyefa, K. Issa, 

A. A. Ibrahim and A. Baddeggi who are my past 

doctoral students and all of my postgraduate students, 

current and past. 

9. I thank my „Mathematics friends‟ Professor S. T. Oni, 

Professor S. A. Okunuga, Professor J. O. Olaleru, 

Professor J. O. Fatokun, Professor D.O. Awoyemi and 

Professor J. O. Omolehin. 

10. I appreciate all my academic colleagues in the 

Department of Pure and Applied Mathematics, Ladoke 

Akintola University of Technology especially Professor 

(Mrs.) Akinpelu, Drs. Ogunsola, Tayo Oluyo and 

Sunday Oluyemi; my academic colleagues in Kwara 

State University, especially Professor D. K. Kolawole, 

Professor S. S. Dada, Professor Bayo Lawal and Dr. 

Abdulraheem Abdulrazak; my colleagues in University 

of Lagos; my colleagues in Covenant University and 

those of Ibrahim Badamasi Babangida University. 



 41 

11. I appreciate the family of Professor A.O. and Mrs. 

Stella Soladoye for their constant support. 

12.  I thank and appreciate Pastor Williams Folorunsho 

Kumuyi, my spiritual father and mentor, who is the 

General Superintendent of the Deeper Life Church 

worldwide. I thank Pastor David O. Adebiyi, my State 

Pastor, Pastor Moses Salami, Pastor O. K. Tubi, all my 

other leaders as well members of the Deeper Life Bible 

Church most especially those of the GRA/ Tanke 

Groups of District. 

13. I appreciate his Royal Highness, the Oba of Ijan- Otun, 

who inspite of his busy schedule found time to grace 

this occasion and the entire Ijan- Otun Community. 

14. I appreciate my in-laws, the entire Alefemi family of 

Kabba and the family of late Mr. J. J. Johnson. 

15.  I appreciate Dr. & Mrs G. K. Oyinloye, Mr. & Mrs. J. 

Odewoye, Engr & Prof (Mrs) J. O. Omosewo, Dr. & 

Mrs. E. F. Awotundun, Mr.& Mrs. T. O. Adeniyi, Mr.& 

Mrs. S. A. Afolayan, Mr.& Mrs. N. T.  Olabanji and all 

other members of my extended family especially those 

in the Obanla compound, Ijan-Otun. 

16. I thank Professor G. T. Ijaiya and members of the Ogo 

Oluwa Community Landlord Association, Tanke-Bubu, 

Ilorin. 

17. I highly appreciate the input of the Library and 

Publications Committee of the University, headed by 

„my friend‟  Professor Y. A. Quadri,  to this finished 

product. The Office of the Deputy Registrar (Academic 

Support Services) is also appreciated and the same goes 

to both the Corporate Affairs Office and the University 

Press. 

18. I thank Professor E. O. Odebunmi, whose Inaugural 

Lecture was a guide in the preparation of this Lecture. 

19. I thank the entire Adeniyi family, the Oyinloye family 

and the Aransiola family of Ijan- Otun. 



 42 

20.  I appreciate my siblings: Mr. Israel A. Adeniyi, Mrs. 

Elizabeth Oguntoye, Mrs. Adenike Adewuyi, Engineer 

John O. Adeniyi and Miss. Folake Adeniyi for their 

constant support. 

21. I am grateful to my father, Mr. Emmanuel Sunday 

Adeniyi and my mother, Mrs. Maria Wuraola Adeniyi 

who was truly iya-ni-wura indeed and to the core, and 

who stood by me in the very dark days of my life. Oh 

sweet and great mother! (Both are now late). 

22. There are two sets of „human Chebyshev polynomials‟ 

in my life, the first of which is my caring cousin and his 

wife, Pastor M. A. & Deaconess R. R. Adeniyi who 

provided the enabling environment for me in their 

house to pursue my academic study right from Primary 

three up to Masters level. I recall with deep nostalgia 

how this wonderful couple who, having recognised my 

academic potentials among other children living with 

them, would offer to buy me books (and not other 

things) as gifts. This I believed helped me greatly later 

in life. 

23. The other „Chebyshev polynomial‟ is a singleton 

consisting of my darling wife Victoria whom GOD 

used to put my life in order. My life was really drifting 

before she came in through divine intervention; 

consequently, I appropriately branded her „Olamide‟. 

She is indeed a perfect match for me. Indeed, two are 

better than one as said by the holy writ. To my son, 

John T‟Oluwalashe, and all my other „children‟, you 

are all greatly appreciated. 

 

Thank you all for your attention, patience and 

endurance. May GOD bless and keep you all. 

 

  



 43 

References 

 

Adeniyi R. B. (1989):  Error estimate for the numerical solution 

of ordinary differential equations by canonical 

polynomials in the tau method  Advances In Modeling 

and Simulation, AMSE Review, AMSE Press  10:  1-

20.  

Adeniyi R. B. (1993):  Error estimation for the piece-wise tau 

method for numerical solution of initial value 

problems  Journal of the Nigerian Mathematical 

Society   12:  19-30.  

Adeniyi R. B.  (1994):  Some continuous schemes for 

numerical solution of certain initial value problems 

with the tau method  Afrika Matematika, Journal of 

the African Mathematical Union, 3 (3): 61-74.    

    Adeniyi R. B.  (1996):  An error estimate of a one-step 

method for the numerical      integration of certain 

initial value problems  International Journal of 

Computer Mathematics   61:  91-101.  

Adeniyi R. B.  (2000):  Optimality of an error estimate of a 

one-step numerical     integration scheme for certain 

initial value problems  International  Journal of 

Computer Mathematics  75:  283-295. 

Adeniyi R. B.   (2004):  The tau method in the numerical 

solution of integral equations, Journal of the 

Mathematical Association of Nigeria  31: 193-200.  

Adeniyi R. B.  (2007):  On a class of optimal order tau method 

for initial value problems in ordinary differential 

equations  Kenyan Journal of Sciences  12  17-30.  

Adeniyi R. B. (2014):  Essentials of Basic Ordinary 

Differential Equations.  Published by  University of 

Ilorin Publishing House, Ilorin. 

Adeniyi  (2014):  Essentials of Basic Mathematical Methods 

for Science and         Engineering Students.  Published 

by  University of Ilorin Publishing House, Ilorin. 

 



 44 

Adeniyi R. B., Adeyefa E. O and Alabi M. O. (2012):  A 

Computational Experiment with a Collocation Method 

for Continuous Formulation of a Predictor-Corrector 

Scheme for IVPs in ODEs  Kenya Journal of 

Sciences  15:  1-11.  

Adeniyi R. B.,  Adeyefa E. O and Alabi M. O.  (2006):  A 

continuous formulation of some classical initial value 

solvers by non-perturbed multi-step collocation 

approach using Chebyshev polynomials as basis 

functions, Journal of the Nigerian Association of 

Mathematical Physics 10: 261-274.  

Adeniyi R. B. and Agyingi E. O,  (1998):  A computational 

experiment with the error estimates of a one-step 

integration scheme for certain initial value 

problems  ABACUS, Journal of the Mathematical 

Association of Nigeria   26: 577-584. 

Adeniyi R. B.and Alabi M. O.  (2006):  Derivation of 

continuous multi-step methods using Chebyshev 

polynomials basis function  ABACUS, Journal of the 

Mathematical Association of Nigeria  33: 351-360. 

 Adeniyi R. B. and Alabi M. O.  (2009):  A class of continuous 

accurate implicit LMMs with Chebyshev basis 

functions  Scientific annals of the 

University   LV  365-382.  

Adeniyi R. B. and Alabi M. O.  (2011):  A collocation method 

for direct numerical integration of initial value 

problems in higher order ordinary differential 

equations  Annals of the Alexandru Ioan Cuza 

University – Mathematics  LVII  311-321.  

Adeniyi R. B., Alabi M. O. and Folaranmi R. O.  (2008):  A 

Chebyshev- collocation approach for a continuous 

formulation of hybrid methods for initial value 

problems in ordinary differential equations  Journal of 

the Nigerian Association of Mathematical 

Physics   12: 369-378. 



 45 

 Adeniyi R. B.and  Aliyu A. I. M. (2007):  On the integrated 

formulation of a numerical integration scheme for a 

class of non-overdetermined second order differential 

equations  Journal of the Nigerian Mathematical 

Society  26:  111-123.  

Adeniyi R. B. and Aliyu A. I. M.  (2008):  On the tau method 

for a class of non-overdetermined second order 

differential equations  Advances in Modeling and 

Analysis  45:  27-44  

Adeniyi R. B. and Bamgbala M. O. (2015): Formulation of 

discrete and continuous hybrid methods using 

orthogonal polynomial as the basis function, Journal of 

the Nigerian Association of Mathematical 

Physics   29: 491-498.  

Adeniyi R. B., Onumanyi P. and Taiwo O. A.   (1990):  A 

computational error estimate of the tau method for non-

linear ordinary differential equations,  Journal of the 

Nigerian Mathematical Society  19: 21-32.  

Adeniyi R. B. and Edungbola E. O.  (2007):  On the recursive 

formulationof the tau method for a class of 

overdetermined first order differential 

equations  ABACUS, Journal of the Mathematical 

Association of Nigeria   34: 249-261. 

Adeniyi R. B. and Edungbola E. O.  (2008):  On the tau method 

for certain over-determined first order differential 

equations  Journal of the Nigerian Association of 

Mathematical Physics  12:  399-408    

Adeniyi, R. B. and Ekundayo Funke (2014) A numerical 

integration scheme with certain orthogonal polynomials 

in a collocation approximation technique for ordinary 

differential equations, Journal of the Nigerian 

Association of Mathematical Physics 28 ( 2): 129 – 

140 20. 

Adeniyi R. B. and Erebholo F. O.   (2007):  An error estimation 

of a numerical integration scheme for certain initial 

boundary value problems in partial differential 



 46 

equations  Journal of the Nigerian Mathematical 

Society   26:  99-109. 

Adeniyi R. B. and Taiwo O. E.  (2015): Higher-step hybrid 

block methods for the solution of initial value problems 

in ordinary differential equations, Journal of the 

Nigerian Association of Mathematical Physic 29: 467-

476. 

Adeniyi R. B. and Olugbara O. O. (1996):  Object-oriented 

computer program for a numerical integration scheme 

for ODEs with an error estimation  ABACUS, Journal 

of the Mathematical Association of Nigeria  24: 129-

143. 

Adeniyi R. B., Olugbara O. O. and Taiwo O. 

A.  (1999):  Generic algorithms for solving ODEs using 

the tau method with an error estimation  International 

Journal of Computer Mathematics 72: 63-80  72  63-

80.  

Adeniyi R. B. and Onumanyi P.  (1991):  Error estimation in 

the numerical solution of ODEs with the tau 

method  Computer and Mathematics with 

Applications  21 : 19-27.    

Adeniyi R. B., Onumanyi P. and Taiwo O. A.  (2007):  A class 

of A-stable optimal order tau methods for certain linear 

ordinary differential equations, Nigerian Journal of 

Pure and Applied Sciences  22: 2090-2098. 

Adeniyi R. B. and Yakusak N. S. (2014) Chebyshev 

collocation approach for continuous two-step hybrid 

block method for the solution of first order initial value 

problems, Journal of the Nigerian Association of 

Mathematical Physics 28 (2):141– 150  

 Adeyefa E. O. and Adeniyi R. B. (2015): Construction of 

orthogonal basis function and formulation of 

continouos hybrid schemes for the solution of third 

order ODEs, Journal of the Nigerian Association of 

Mathematical Physics   29: 21-28.  



 47 

Areo E. A. and Adeniyi R. B.  (2012):  One-step embedded 

Butcher type two-step block hybrid method for IVPs 

in ODEs. Edited by E. A. Ayoola, V. F. Payne and D. 

O. A. Ajayi  120-128  Ibadan  Department of 

Mathematics, University of Ibadan, Ibadan. 

Areo E. A.  and Adeniyi R. B.   (2013a):  Sixth-order hybrid 

block method for the numerical solution of first order 

initial value problems  Journal of Mathematical 

Theory and Modeling  3(8) : 113-120.  

Areo E. A. and Adeniyi R. B.   (2013b):  A self-starting linear 

multistep method for direct solution of initial value 

problems of second order ordinary differential 

equations  International Journal of Pure and Applied 

Sciences  82:  345-364.  

Awoyemi D. O., Kayode S. J and Adoghe L. O (2014), A four –

point fully implicit method for numerical integration of 

third-order ordinary differential equations, Int. J. 

Physical Sciences, 9(1) 7-12. 

Badmus A. M. and Y.A. Yahaya, (2009)Some multi derivative 

hybrid block methods for solution of general third order 

ordinary differential equations, Nigerian Journal of 

Scientific Research, 8 103-107. 

Barrodale I. and Young A. (1970), Computational experience in 

solving linear operator equations using the Chebyshev 

norm, In: Numerical Approximation to Functions and 

Data, edited by J.G. Hayes, The AthIonePress, . 115-

142,.  

Biala T. A. and Adeniyi R. B. (2015): A line-tau collocation 

method for partial differential equations, Journal of the 

Nigerian Association of Mathematical Physics   30: 

41-48.  

Biala T. A., Jator S. N., Adeniyi R. B., Ndukum P. L. (2015): 

Block hybrid Simpson‟s method with two off-grid 

points for stiff systems, International Journal of 

Nonlinear Science 20 (1): 3-10. 



 48 

Coleman J. P. (1976), The Lanczos tau method, J. Inst. Maths. 

Applics., 17:85 – 97. 

Conte, S. D. (1966), The numerical solution of linear boundary 

value problems, STAM Review, 8:309 – 321. 

Crisci M. R. and Ortiz E. L. (1981), Existence and convergence 

result for the numerical solution of differential 

equations with the tau method, Imperial College Res. 

Rep, 1 – 16. 

Davey A (1980), On the numerical solution of difficult 

boundary value problems,” J. Comp. Phys., 35:36 – 47. 

Delves, L. M. (1976), Expansion methods in modern numerical 

methods for ordinary differential equations (edited by 

Hall, G and Watt, J. M.), Clarendon Press, Oxford. 

Erebholo F. O. and Adeniyi R. B. (2015): A Prior Integration 

Numerical Integration Scheme for Certain IBVP in 

Partial Differential Equations with Error Estimation, 

International Electronic Journal of Pure and Applied 

Mathematics, IeJPAM,  
England R. and Matthiej R.M.M., (1985), Discretization with 

dichotomic stability for two-point BVP‟s.  Proceeding 

of the Workshop on Numerical Boundary Value 

ODEs (U. Ascher, R.D. Russel Eds.) Birkhauser, 91 – 

106. 

Fairweather G. and Meade D. (1989),  A survey of spline 

collocation methods for the numerical solution of 

differential equations in Mathematics for Large Scale 

Computing (J.C. Diaz, Ed.), Lecture Notes in Pure and 

Applied Mathematics.  New York, Marcel Dekker, 
120. 297 – 341. 

Fatokun J., Onumanyi P. and Siriseria U.W. (2005), Solution of 

first order system of ordinary differential equation by 

continuous finite difference methods with arbitrary 

basis function. J. Nig. Math. Soc, 24 : 30 – 40. 

Fox, L. (1962), “Chebyshev methods for ordinary differential 

equations”, Compt. J., 4:318 – 331. 



 49 

Fox, L. (1968), Numerical solution of ordinary and partial 

differential equations, Pergamon Press, Oxford. 

Fox, L. and Parker, I. B. (1968), Chebyshev polynomials in 

numerical analysis, University Press, Oxford. 

Freilich, J. H. and Ortiz, E. L. (1982), Numerical solution of 

system of ordinary differential equations with the tau 

method: An error analysis:, Math. Comp., 39:467 – 

475. 

Freilich, J. H. and Ortiz, E. L. (1991), Upper and lower error 

estimation for the tau  method: some remarks on a 

problem of rational approximation, Computer and 

Mathematics with Applications 22 (10) 89-97. 

Gerald, C. F. (1970), Applied numerical analysis, Addison – 

Wesley Publishing Co; Phillipines. 

Henrici P. (1962), Discrete Variable Methods for ODEs, New 

York USA, John Wiley and Sons. 

Issa K.  and Adeniyi R. B. (2013):  A generalized scheme for 

the numerical solution of initial value problems in 

ordinary differential equations by the recursive 

formulation of tau method  International Journal of 

Pure and Applied Mathematics   88:  1-13.  

Issa K. and Adeniyi R.B.: Extension of generalized recursive 

Tau method to non-linear ordinary differential 

equations, Journal of the Nigerian Mathematical 

Society  34: 70-82.  

Jator S. N (2008), Multiple finite difference methods for 

solving third order ordinary differential equations, 

International Journal of Pure and Applied 

Mathematics, 43(2) 253-265. 

Jator S. N (2007), A sixth order linear multistep method for the 

direct solution of  yyxfy  ,, , International 

Journal of Pure and Applied Mathematics, 40(4) 457-

472. 

Lambert J. D., (1973), Computational methods in ordinary 

differential equations.  John Wiley and Sons, New 

York. 



 50 

Lanczos, C. (1956), Applied analysis, Prentice Hall, New 

Jersey 

Lanczos, C. (1938), “Trigonometric interpolation of empirical 

and analytic functions”, J. Maths. Phys, 17:123 – 199 

Lanczos C. (1973), Legendre versus Chebyshev polynomials, 

Topics in Numerical Analysis (Miller J.C.P. ed), 

Academic Press, London. 

Lie L. and Norsett P. (1989),  Superconvergence for multistep 

collocation.  Math. Comp. 52, 65 – 80. 

Ma‟ali , A .I., Adeniyi , R. B., Baddegi, A.Y. & Mohammed 

.U   (2014): Generalization of tau approximant and 

error estimate of integral form of the tau method for 

some class of ordinary differential equations, 

Lapai  Journal of Science and Technology 2 (2): 114-

130.  

Mohammed U (2011), A class of implicit five step block 

method for general second order ordinary differential 

equations, Journal of Nigerian Mathematical Society, 

30, 25-39. 

Mohammed U and R. B. Adeniyi  (2014a) A three step implicit 

hybrid linear multistep method for the solution of third 

order ordinary differential equations  General 

Mathematics Notes  25(1):62-74. 

Mohammed U. and Adeniyi R. B.  (2014b):  Construction and 

implementation of hybrid backward differentiation 

formulas for solution of second order differential 

equations  Journal of the Nigerian Association of 

Mathematical Physics   27: 21-28.   

Mohammed U. and Adeniyi R. B. (2014c): Derivation of five 

step block hybrid backward differentiation formulas 

through the continuous multistep collocation for 

solving second order differential equations  Pacific 

Journal and Science and Technology 15 (2): 89 – 95.  

Namasivayam R. and  Ortiz E. L, (1993) Error analysis of the 

tau method: dependence on the approximation error on 



 51 

the choice of perturbation terms, Computers and 

mathematics with applications 25 (1) 89-104. 

Namasivayam R. and  Ortiz E. L, (1981) Perturbation terms and 

approximation error in the numerical solution of 

differential equations with the Tau Method, Imperial 

College Research Rep. NAS 05-09-81, 1-5.  

Ndukum P. L., Biala T. A., Jator S. N.and Adeniyi R. B.  

(2015): A fourth order trigonometrically fitted method 

with the block unification implementation approach for 

oscillatory initial value problems, International 

Journal of Pure and Applied Mathematics, 103(2): 

201-213.  

Olabode B. T. and Y. Yusuph  (2009), A new block method for 

special third order ordinary differential equations, 

Journal of Mathematics and Statistics, 5(3) 167-170. 

Oliver, J. (1969), An error estimation technique for the solution 

of ordinary differential equations in Chebyshev series, 

Compt. J., 12:57 – 61. 

Onumanyi P (1983) Approximation of basic mathematical 

functions in modern computers using Chebyshev 

polynomials, Technological Development and 

Nigerian Industries 1 (Edited by B. J. Olufeagba, J. S. 

O.Adeniyi and M. A. Ibiejugba), 423-429. 

Onumanyi P.,Oladele J. O., Adeniyi R. B. and Awoyemi D. 

O.  (1993):  Derivation of finite difference methods by 

collocation, Abacus 23: 72-83.  

Onumanyi, P. and Ortiz E. L. (1982), Numerical solution of 

higher order boundary value problems for ordinary 

differential equations with an estimation of the error”, 

Intern. J. Numer. Math. Engrg. 18: 775 – 781 

Ortiz, E. L. (1974), Canonical Polynomials in the Lanczos tau 

method, Studies in Numerical Analysis (edited by 

Scaife, B. K. P), Academic Press, New York. 

Ortiz, E. L. (1969), The tau method, SIAM J. Numer. Anal. 

6:480 – 492 



 52 

Prothero A. and Robinson A., (1974), On the stability and 

accuracy of one-step methods for solving stiff systems 

of ordinary differential equations,  Maths. Comp. 28, 

145  -  162. 

Sagir (2014),, On the approximate solution of continuous 

coefficients for solving third order ordinary differential 

equations, International Journal of Mathematical, 

Computational Science and Engineering, 8(3) 39-43. 

Sarafyan, D. (1990), New algorithms for the continuous 

approximate solution of ordinary differential equations 

and the upgrading of the order of the processes, Comp. 

Applic., 20(1): 77 – 100. 

Wright K. (1970),  Some relationships between implicit Runge-

Kutta collocation and Lanczos -methods and their 

stability properties, BIT 10, M 217 – 227. 

Yisa B. M. and Adeniyi R. B. (2012):  On the variants of the 

tau method for solution of IVPs in first order 

differential systems  Kenya Journal of 

Sciences  15:  1- 12.  

Yisa B. M. and Adeniyi R.B  (2015): On the generalization of 

the error and error estimation process of Ortiz‟s 

recursive formulation of the tau method,  Journal of 

the Nigerian Mathematical Society  34: 70-82.  

Zadunaisky, P. (1976), On the estimation of errors in the 

numerical interpolation of ordinary differential 

equation, Numer. Maths. 27:21 – 39. 

Zennaro M. (1985),  One-step collocation:  Uniform 

superconvergence, predicator-corrector method, local 

error estimate,  SIAM J. Numer. Anal. 22, 1135 – 

1152. 


